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Problems

Problem 1. With a little help of row reduction we get∣∣∣∣∣∣
2 −3 1
−3 4 1
4 −5 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 −3 1
−3 4 1
0 1 0

∣∣∣∣∣∣ = (−1)3+2 ·
∣∣∣∣ 2 1
−3 1

∣∣∣∣ = −1 · (2 + 3) = −5

Problem 2. First we find eigenvalues. The characteristic equation is λ2 − 5λ+ 6 = 0, so λ1 = 2 and
λ2 = 3 are the eigenvalues. Thus the diagonal matrix D from the decomposition A = PDP−1 can be taken

to be D =

[
2 0
0 3

]
.

If λ = 2, A− 2I =

[
−1 1
−2 2

]
∼
[
1 −1
0 0

]
. Thus when solving the system (A− 2I)v = 0 the variable x2 is

free, and x1 = x2. Thus eigenvectors corresponding to the eigenvalue λ = 2 are of the form v1 = x2

[
1
1

]
. In

particular we can take v1 to be

[
1
1

]
.

We do the same thing for λ = 3, we get A− 3I =

[
−2 1
−2 1

]
∼
[
2 −1
0 0

]
. Thus eigenvectors corresponding to

the eigenvalue λ = 3 are of the form v2 = x2

[
1/2
1

]
. In particular we can take v2 to be

[
1
2

]
.

Thus matrix P can be taken to be P = [v1v2] =

[
1 1
1 2

]
. Thus P−1 = 1

1·2−1·1

[
2 −1
−1 1

]
=

[
2 −1
−1 1

]
, and

so

A =

[
1 1
−2 4

]
= PDP−1 =

[
1 1
1 2

] [
2 0
0 3

] [
2 −1
−1 1

]
Problem 3. The same stuff as before. First deal with A− I, and get

A− I =

 1 2 −1
1 2 −1
−1 −2 1

 ∼
1 2 1

0 0 0
0 0 0


Variables x2, x3 are free, and x1 = −2x2 − x3, so the eigenvectors are of the form

v =

−2x2 − x3
x2
x3

 = x2

−2
1
0

+ x3

−1
0
1



So we can take eigenvectors v1 =

−2
1
0

 , v2 =

−1
0
1

.

Now do the same for λ = 5. You get

A− 5I =

−3 2 −1
1 −2 −1
−1 −2 −3

 ∼
1 −2 −1

0 −4 −4
0 8 8

 ∼
1 −2 −1

0 1 1
0 0 0



So x3 is free, and x2 = −x3, x1 = 2x2 +x3 = −x3. So we can take the third eigenvector v3 to be v3 =

−1
−1
1


1



Thus we get

A = PDP−1 =

−2 −1 −1
1 0 −1
0 1 1

 2 2 −1
1 3 −1
−1 −2 2

−2 −1 −1
1 0 −1
0 1 1

−1

Problem 4. The characteristic equation reads λ2 − 8λ+ 16 = (λ− 4)2 = 0 and so there is unique

eigenvalue λ = 4. Then A− 4I =

[
−3 3
−3 3

]
∼
[
1 −1
0 0

]
. So all eigenvectors are of the form v1 = x2

[
1
1

]
.

Since there is only one independent eigenvector, i.e. there is no basis consisting of eigenvectors of A, the
matrix is not diagonalizable.

Problem 5. Put the vectors into matrix and row reduce[
1 2
2 3

]
∼
[
1 0
0 −1

]
Since every row and column has a pivot, the two vectors form a basis of R2.

To find T in the new basis {v1, v2} we find P , the matrix, columns of which is the coordinates of new basis

in terms of the old basis, i.e. coordinates of v1, v2 in the standard (for this problem) basis. So P =

[
1 2
2 3

]
.

Thus the matrix M of T in the new basis can be found using the matrix A of the transformation T in the
old basis and the matrix P by the equation M = P−1AP , i.e.

M =
1

1 · 3− 2 · 2

[
3 −2
−2 1

] [
2 −1
1 0

] [
1 2
2 3

]
=

[
2 1
−1 0

]
.

Problem 6. We compute T (−t2 + 2t+ 1) = t · (−t2 + 2t+ 1)′ = t(−2t+ 2) = −2t2 + 2t.
To prove that T is a linear transformation, just check the definition.
T (cp(t)) = t · (cp(t))′ = ctp(t)′ = cT (p(t)). Also
T (p(t) + q(t)) = t · (p(t) + q(t))

′
= tp(t)′ + tq(t)′ = T (p) + T (q). So T is a linear transformation.

To find the matrix, we need to see where the basis vectors go, and find their coordinates relative to the
basis in the target space. We compute T (1) = 0, T (t) = t, T (t2) = 2t2. Thus the matrix is

M =


0 0 0
0 1 0
0 0 2
0 0 0


To find null space we row reduce. Well, it’s already row reduced. The first column has no pivots, so a basis

for null space is


1
0
0
0

 which corresponds to the polynomial p(t) ≡ 1 ∈ P2. It’s actually obvious that

T (a0 + a1t+ a2t
2) = a1t+ 2a2t

2, and so T (p) = 0 if and only if a1 = a2 = 0, so the null space consists of
constant polynomials.
The rank of the matrix M above is 2, so the rank of T is 2. Rank doesn’t depend on a basis, so it is enough
to consider matrix of T in any basis you want.

Problem 7. You put the first basis (the basis in the domain) into the matrix P , and the basis of the
codomain into the matrix Q, so

P =

[
1 0
−1 1

]
, Q =

 1 2 1
1 −1 −1
−1 2 −2


Then the matrix M of T in relative to the two bases will be M = Q−1AP , i.e.

M =

 1 2 1
1 −1 −1
−1 2 −2

−1 3 2
0 −1
1 2

[ 1 0
−1 1

]
=

1 0
0 1
0 0



2



Problem 8. If A has n distinct eigenvalues, then A can be diagonalized, and so A = PDP−1 for a diagonal
matrix D. Then AT = (P−1)TDTPT = (PT )−1DPT where the last equality follows from the fact that D is
diagonal, and so DT = D, and also that transposition commutes with inverse, i.e. (P−1)T = (PT )−1. But
this means that in the basis given by the columns of (PT )−1 matrix A becomes the diagonal matrix D with
n different entries along the diagonal. This exactly means that there is a basis on Rn where AT acts by
scaling this basis by different numbers. But this is just the definition of what is a basis of eigenvectors.

Problem 9. If A = PBP−1 then

det(A− λI) = det(PBP−1 − λI) = det(PBP−1 − λPIP−1) = detP (B − λI)P−1 = det(B − λI).

So the characteristic polynomials are the same.
If v is an eigenvector for A, then Av = λv, and so PBP−1v = λv, and so BP−1v = λP−1v. This exactly
means that P−1v is an eigenvector of B with the same eigenvalue λ.
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